海啸书院
会员书架
首页 >其他类型 >我真的只想当一个学神啊 > 第九百二十四章 有些枯燥、却又无比珍贵、意义无比重大的画面

第九百二十四章 有些枯燥、却又无比珍贵、意义无比重大的画面

上一页 章节目录 加入书签 下一页

标是成为“物理的终极理论”。当年爱德华·威滕为了从数学的角度研究和完善M理论,不断地发明新的数学工具,并因为这些数学成果获得了菲尔兹奖。

不过M理论发展到现在,已不只爱德华的理论了,而是呈现百家争鸣的局面。

造成的结果就是,M理论不但没有越来越“清晰”,反倒因为结合了五种超弦理论、十一维空间、超引力理论、膜理论等诸多“玄之又玄”的抽象理论,变得越来越复杂。

原本弦理论就是建立在“推理”与“抽象”的空想上,数学对它的解释都未达到完美,更别说混入更多空想理论而成的M理论了,许多物理学家直接认为M理论已成为了空中楼阁,纯幻想产物,抨击其除了“可以当成脑力游戏、智力衡量的标准”外,再无用处。

但包括霍金、剑格大学的汤德森教授在内,诸多近三十年内最有名的物理学家都投入了与超弦理论、M理论的研究与纷争之中,使得M理论进入群雄并立、混乱不堪的局面。

时至今日,依然未有任何一方大佬能给出让所有人都信服的“M理论”成熟体系。

现在,M理论的领头羊爱德华·威滕,再加上秦克、宁青筠、老陶组成的最强团队,再加上编外人员邱老先生,就向着“以数学来完善论证M理论”的目标发起了进攻,试图结束这种混乱的局面,建立逻辑自洽的完善的M理论。

第一个目标就是解决“卡拉比-邱空间”。

这个“卡拉比-邱空间”,全称是“卡拉比—邱成同空间”,也称“卡拉比—邱成同流形”。

它指一个蜷缩的高维空间,这是科学家猜测出来的一个理论,有六个维度,其数学基础是由意大丽数学家卡拉比提出的卡拉比猜想,再由与现在坐在众人的邱老先生于27岁那年证明,属于纯数学计算的产物,没办法用仪器进行观测。

根据数学计算,“卡拉比-邱空间”的半径小于亿亿亿亿分之一米,只有质子和中子半径的亿万分之一,它的内部空间有六个蜷缩在特异几何结构中的维度,迂回曲折且扭曲,根本无法使用传统的欧几里德几何描述,科学家们认为它遵循着一种更为抽象、没有直线的几何学。

虽然也是靠着数学推导而成、无法以物理实验观测的“空想”产物,但“卡拉比-邱空间”的“紧缩性能”对于超弦理论非常重要,目前已经测试出25种“卡拉比-邱空间”可以构造与之符合的超弦理论。

当年超弦理论提出来时,认为所有基本粒子都是由不断振动的弦线组成,时空具有超对称性,并且是十维的,比如物理学家坎德拉斯、霍洛维茨等人合着论文《超弦的真空结构》里,就坚持认为存在十维空间,多出来的六个维度隐藏于“卡拉比-邱空间”之中,此六维独立于四维时空的每一个点。

到了M理论,认为存在11维空间,但这种多出来的六个维度隐藏在“卡拉比-邱空间”之中的猜测依然存在,不少物理学家倾向于认为这种“卡拉比-邱空间”可能是宇宙中最基本的单元之一,所以人类只能看到最多五维时空。谁能准确破解“卡拉比-邱空间”的几何特性,谁就可能打开发现宇宙奥秘的大门。

——因为自然界的一些常数,哪种粒子能够存在、质量是多少,它们如何相互作用,甚至宇宙的性质和物理定律都取决于“卡拉比-邱空间”。

但为什么“卡拉比-邱空间”里面是恰好的六个维度?

对于这个问题,正在喝着绿茶的邱老先生很干脆地一摊手:“当初坎德拉斯、霍洛维茨也向我提出过类似的问题,我让他们问卡拉比更合适,我只是将他的猜想证明了出来,至于他是凭着直觉还是怎么‘猜’出来,我就不清楚了。”

很可惜,卡拉比当时应该是没有回答坎德拉斯、霍洛维茨,而现在,卡拉比大师已在前些日子仙逝了,享年100岁零4个月,这个问题更是没人能回答。

“不过,我当年确实研究过与这个问题有点关联的‘镜像对称猜想’。”

邱老先生说的“镜像对称猜想”,是指“卡拉比-邱空间”之间的一种特殊关系,即两种“卡拉比-邱空间”虽然在几何上差别很大,但是作为弦理论的额外维度时却是等价的,这样的一对“卡拉比-邱空间”被称为镜像对称。

这个猜想最初是物理学家菲利普·坎德拉斯等人发现的,并从物理角度证明镜像对称可用于计算“卡拉比-邱空间”上有理曲线的数目,后来邱老先生与另外两个数学家,用局部化技巧完全证明关于“卡拉比-邱空间”上有理曲线计数的镜猜想。

根据这个猜想,六维的“卡拉比-邱空间”本质上可以分成两个三维空间,其中之一是三维环面,如果模仿把半径 r变成 1/r的操作,把这些三维环面“翻转”,并与另一个三维空间结合起来,就会得到原“卡拉比-邱空间”的镜伴。

但这也只是证明了“镜像对称猜想”的一部分特性,并没有将之完全证明。

想破解“卡拉比-邱空间”内部维度为六的难度可见一斑,但现在有了“新几何学”,就相当于是有了研究“卡拉比-邱空间”的大杀器。

此时正是6月16日的周

点击切换 [繁体版]    [简体版]
上一页 章节目录 加入书签 下一页